Operating Instructions

A2000

Multifunctional Power Meter

3-348-981-03 21/2.08

Contents

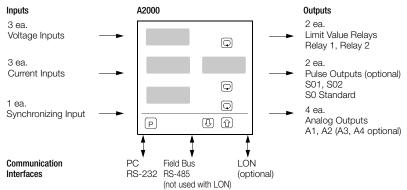
1	Application	4
2	Instrument Description	4
2.1	Instrument Overview	4
2.2	Inputs, Outputs and Interfaces	5
2.3	Available Measurement Data	8
2.4	Possible A2000 Parameter Settings	10
2.5	Factory Default Instrument Parameters	12
3	Operating the A2000	
3.1	Control Panel	13
3.2	Response After Auxiliary Power is Switched On	13
3.3	Menu Display for Measurements in 4-Wire Systems	14
3.4	Menu Display for Measurements in 3-Wire Systems	16
3.5	Error Messages	18
4	Configuring the A2000	19
4.1	Configuring the Limit Value Relays	
4.2	Adjustment of Display Brightness and Filter	22
4.3	Measurement Inputs, Configuring the Synchronizing Input	24
4.4	Configuring the Analog Outputs (not with Profibus-DP)	26
4.5	Configuring the SO Pulse Outputs	27
4.6	Data Logger Display and Configuration	28
4.7	Configuring the Energy Meter Mode/Low Tariff	33
4.8	Interface Configuration	34
4.9	Uploading and Deleting Parameters, Setting the Clock	36

Contents

5	Electrical Connections and Circuits	
6	Interface Description	41
6.1	General	
6.2	Communications Protocol	
7	Dimensional Drawing	43
8	Technical Data	44
9	Maintenance – Device Return and Environmentally Sound Disposal	46
10	Repair and Replacement Parts Service DKD Calibration Lab	
	and Rental Instrument Service	47
11	Product Support	47

1 Application

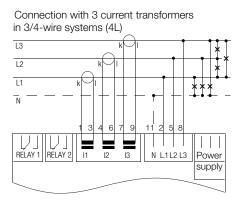
The A2000 measuring instrument is used for the analysis and monitoring of 3-phase current systems. It can be operated with internal transformers in 3-phase current systems of up to 5 A and 500 V nominal voltage, and can perform measurements in medium-voltage systems in combination with external current and voltage transformers.

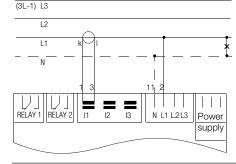

The A2000 acquires voltages, current, frequency and phase displacement in 3 and 4-wire systems. It calculates active, reactive and apparent power, active and reactive energy, as well as the power factor for the individual phases based upon these values.

An FFT (= Fast Fourier Transformation) is performed on the basis of the currents and phase voltages and the harmonic waves are determined up to the 15th harmonic. For the phase voltages, the harmonic distortions of the individual harmonics are indicated as well as the total harmonic distortion, for the currents, the respective RMS values are indicated.

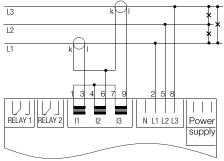
Transformation ratios can be entered to the instrument, which means that all primary measurement data can be displayed directly at the A2000. Maximum values are stored to memory for every measured or calculated quantity. If limit values are exceeded, corrective action can be triggered via relay outputs. Energy meters, recorders, data loggers and control loops can be connected to the digital and analog outputs. The instrument can be integrated into a field bus system or a LON network with the communications interfaces, or its parameters can be configured with a PC.

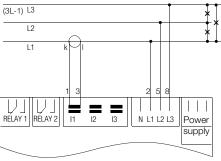
2 Instrument Description


2.1 Instrument Overview

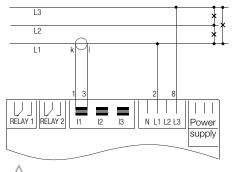

2.2 Inputs, Outputs and Interfaces

Current Inputs

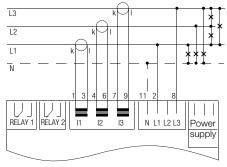

All current inputs are isolated from one another. If measurements are performed with external transformers, their primary and secondary current values must be entered, in order to enable direct display of current values. Switching between the two meas. ranges (1 A and 5 A) is accomplished via software.


Connection with 1 current transformer in 4-wire systems (balanced load) (3L-1)

Connection with 2 current transformers in 3-wire systems (3L)



Connection with 1 current transformer in 3-wire systems (balanced load) (3L-1)


GMC-I Gossen-Metrawatt GmbH

Connection with 1 current transformer in 3-wire systems (balanced load) (3L13)

For this connection type the accuracy values for the measurement of power, energy and power factor are only observed in the case of low-distortion tension. The setting "Compensating reactive power" is not possible.

Connection with 3 current transformers in 4-wire systems (Open Y) (4L13)

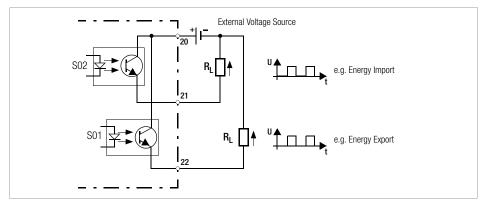
Voltage Inputs

Each voltage measurement input is provided with a safety impedance (incl. the N conductor). Measurements within 3-phase systems of up to 500 V are possible without the use of external transformers.

Mains Supply Power

Mains supply power must correspond to the specified values indicated on the serial plate. Correct connection is absolutely essential!

Synchronizing Input


The synchronizing input is used to select the interval for calculation of the consumption value. An external, potential-free contact must be used to drive this input. However, synchronization can also be internally controlled with the software. Alternatively, a switch-over between low tariff and high tariff is possible with the synchronizing input (see chapter 4.7 on page 33).

Relay Outputs

Limit values can be monitored for every measured or calculated quantity. These limit values can be assigned to the relay outputs.

Pulse Outputs

The values for measured reactive and active energy can be read out at the pulse outputs in the form of standard S0 pulses for the driving of electromechanical counting mechanisms.

Analog Outputs

Each measured or calculated quantity can be assigned to one of the analog outputs. Exception: FFTvalues, which can only be read out via the RS-232 and RS-488 interfaces. This allows for the logging or driving of secondary control loops. The outputs can be configured as voltage or current outputs with the help of the DIP switches.

Communications Interfaces

The A2000 is provided with RS232 and RS485 interfaces as standard equipment. The RS485 interface is not included with the LON model due to space limitations.

The **RS232 interface** allows for the transmission of measurement values from the A2000 to a PC, as well as external instrument configuration. The chapter entitled "Interface Description" on page 41 provides detailed information regarding the generation of user specific programs. The **RS485** field bus interface allows for the interconnection of up to 32 instruments.

2.3 Available Measurement Data

		Individua	al Phases			Collective Valu	Jes	
Phase Voltages	U1	U3	U1 _{max} U3 _{max}		U ₂ ⁴⁾		U _{2 max} ⁵⁾	
Delta Voltages	U12, U23	3, U31	U12 max U31 max			U _{Aavg} ⁴⁾	U _{Aavg max} 5)	
Phase Current	1	13	l1 _{max}	13 _{max}		$U_{\Delta avg}^{(4)}$	l _{Σma}	IX J
Averaged Phase Current	11 _{avg}	I3 _{avg}	I1 avg max	13 avg max		l _{avg Σ} ⁴⁾	$I_{avg \Sigma} m$	5) Iax
Neutral Conductor current	In		In _{ma}			_		
Averaged Neutral Conductor Current	In _{av}	9	In _{avgr}			_		
Line Frequency						f		
Active Power	P1	P3	P1 max	P3 max		PΣ	P _Σ m	iax
Reactive Power	Q1	Q3	Q1 _{max}	Q3 _{max}	Q _∑ Q _{∑m}		nax	
Apparent Power	S1	S3	S1 _{max}	S3 max	S _S S _{Sm}		nax	
Power Factors	PF1	PF3	PF1 min	PF3 min		PF_{Σ}	PF Σ ι	nin
Energy Mode	L123 ¹⁾	LTHT ²⁾	L123 ¹⁾	LTHT ²⁾	L123 ¹⁾	LTHT ²⁾	L123 ¹⁾	LTHT ²⁾
Active Energy	Е _{Р1} Е _{Р3}	-	-	-	Ε _{ΡΣ}	$E_{P\Sigma L-}, E_{P\Sigma L+}, E_{P\Sigma H+}$ 3)	-	-
Reactive Energy	E _{Q1} E _{Q3}	-	-	-	Ε _{QΣ}	$E_{Q\SigmaL-,E_{Q\SigmaL+}}E_{Q\SigmaH-,E_{Q\SigmaH+}}^{U\SigmaL-,E_{Q\SigmaL+}}$	-	-
Intervalic Active Energy	-		-		P int Σ P int Σ m		max	
Interv. Reactive Energy	-		-		Q int Σ Q int Σ ma			
Interv. Apparent Energy	-		-			$S_{int \Sigma}$	S $_{\text{int }\Sigma}$	max
THD, 1 st 15 th harmon.	U1h I1h		U1hmax I1hmax	U3hmax, I3hmax				

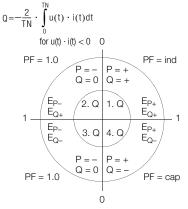
1) L123 = individual phases L1, L2, L3

2) LTHT = low tariff (LT) high tariff (HT)

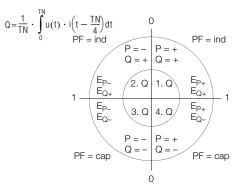
3) L = low tariff, H = high tariff, + = import, - = export

4) only via interface and as a source for relay and analog output

5) only via interface


- The determination of measured and calculated quantities is performed in accordance with DIN 40110 part 1,2 4.96 (non-sinusoidal quantities).
- PEN conductor current is not taken into consideration for the calculation of collective phase current and collective apparent power.
- The averaging of currents I1_{avg} ... I3_{avg} , In_{avg} is performed in the same manner as with a bimetallic indicator, with a setting time of approx. 10 min relative to 99% of the final value.

Display of Reactive Power


 d_{1} n = calculation of reactive power per DIN 40110 without + or - sign

*L*_α*ΠP* = compensating reactive power (reactive power is only produced if current and voltage have different + or - signs)

 5_{I} G_{II} = calculation of reactive power with + or-

$$\begin{split} & \textbf{Calculation of Collective Values} \\ & \textbf{U}_{\Delta a vg} = (\textbf{U}_{12} + \textbf{U}_{23} + \textbf{U}_{31})/3 \\ & \textbf{U}_{\Sigma} = \sqrt{\textbf{U}_{1}^{2} + \textbf{U}_{2}^{2} + \textbf{U}_{3}^{2}} \\ & \textbf{I}_{\Sigma} = \sqrt{\textbf{I}_{1}^{2} + \textbf{I}_{2}^{2} + \textbf{I}_{3}^{2}} \text{ (without I_{N})} \\ & \textbf{S}_{\Sigma} = \textbf{U}_{\Sigma} \cdot \textbf{I}_{\Sigma} \\ & \textbf{P}_{\Sigma} = \textbf{P}_{1} + \textbf{P}_{2} + \textbf{P}_{3} \\ & \textbf{Q}_{\Sigma} = \sqrt{\textbf{S}_{\Sigma}^{2} - \textbf{P}_{\Sigma}^{2}} \text{ (per DIN)} \\ & \textbf{Q}_{\Sigma} = \textbf{Q}_{1} + \textbf{Q}_{2} + \textbf{Q}_{3} \text{ (others)} \\ & \textbf{PF}_{\Sigma} = \textbf{P}_{\Sigma}/\textbf{S}_{\Sigma} \end{split}$$

Possible A2000 Parameter Settings 2.4

Inputs 4 or 3-Wire	Primary Transformer Phase Conductor	Secondary Transformer Phase Conductor	Transformer Primary Current	Transformer Secondary Current	Synchronization Pulse	
Connection	100 V 750 kV	100 V 500 V	1 A 150 kA	1 A, 5 A	external or internal: 1 60 minutes	
Relay 1, 2	Source	Limit Value	Hysteresis	Delay	Alarm Memory	
Max, Min	1) 4)	2)	0 9999 Digit	0 30 min	off, on	
Analog Outputs	Source	Output	Start Source	End Source		
1 4	1) 3)	0 20 mA 4 20 mA -20 +20 mA	2)	2)		
Pulse Outputs	Source	Energy Type	Energy Direction	Pulse Rate	Tariff	
S01, S02	L1, L2, L3, Σ	Active, Reactive Energy	Import, Export	1 5000 pulses/kWh (MWh) 1 5000 pulses/kVArh (MVArh)	High, low tariff	
Display	Brightness 0 7	Filter 0 30 s				
Interfaces	Address	Baud Rate		Parity	Protocol	
RS-232, RS-485	0 254	1200, 2400, 4800, 96	00, 19200	Even, odd, space, no	E244, 870, Mod1, Mod2	
Energy Meter	nergy Meter Mode			Swith-over high/low tariff		
	L123 / LTHT 5)			Clock / Synchr. input		
Reactive Power	per DIN / with +/- sign / for Compensation					

1) Possible sources (see below)

2) Limits are dependent upon the selected transformation ratio at the voltage or current transformer

3) Interval –1 applies to P_{int} , Q_{int} or S_{int} (for recording max. values) 4) Interval 0 applies to P_{int} , Q_{int} or S_{int} (for recording max. values) 5) L123 = individual phases L1, L2, L3; LTHT = low tariff high tariff

Possible Parameter Setting, Data Logger

Trigger: rela	ay 1, relay 2, both, off	Pretrigger: (0%, 25%, 50%, 75%	Disable Trigger: external (synchronizing input), off
Sampling Time:	0,3 s, 0,6 s, 1 s, 2 s, 5 s, 10 s, 15 s, 30 s, 1 min, 2 min, 5 min, 10 min, 15 min, 30 min		1 min, 2 min, 5 min, 10 min, 15 min, 30 min, 1 h, 2 h, 4 h, 8 h, 12 h, 1 day, 2 day, 4 day	Storemode: cyclic, once
Trace 1	12: Source, off			

Possible Sources for Relays, Analog Outputs and Logger

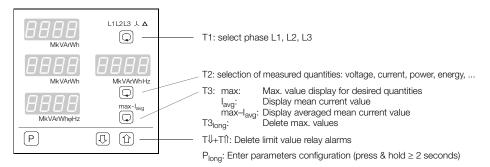
	ΠV	ΠY	I	l _{avg}	Р	Q	S	PF	Fre- quency	P _{int}	Q _{int}	S _{int}	Ext
Source	U12	U1	11	l1 _{avg}	P1	Q1	S1	PF1					
	U23	U2	12	12 _{avg}	P2	Q2	S2	PF2					Actu-
	U31	U3	13	13 _{avg}	P3	Q3	S3	PF3	f	п	0	c	tion via inter-
	U∆ _{mean}	UΣ	lΣ	Σ_{avg}	ΡΣ	QΣ	SΣ	ΡΕΣ	1	$P_{int\Sigma}$	$Q_{int\Sigma}$	$S_{int\Sigma}$	face (not for
	-	—	In	In _{avg}	—	—	—	—					logger)
	for all Ph	ases (only	for Relays)									

Additional Sources for Logger

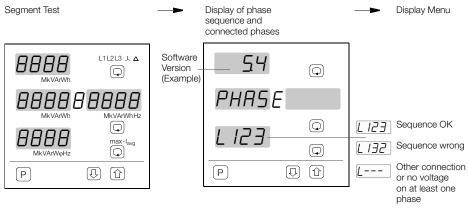
	EP	EQ	l hd	U hd
Source	EP1 / $EP\Sigma_{L-}$	EQ1 / EQ $\Sigma_{L^{-}}$	l thd	U thd
	$EP2 / EP\Sigma_{L+}$	EQ2 / EQ Σ_{L+}	l 1.hd	U 1.hd
	EP3 / EPΣ _{H-}	EQ3 / EQΣ _{H-}		
	$EP\Sigma / EP\Sigma_{H+}$	$EQ\Sigma / EQ\Sigma_{H+}$	l 15.hd	U 15.hd

2.5 Factory Default Instrument Parameters

Inputs	Primary Transformer Phase Conductor	Secondary Transformer Phase Conductor	Transformer Primary Current	Transformer Secondary Current	Synchronization Pulse
4-Wire	500 V	500 V	5 A	5 A	Internal, 15 minutes
	Source	Limit Value	Contact Type	Hysteresis, Delay	Alarm Memory
Relay 1	11	5 A	Max	0	off
Relay 2	U1	240 V	Max	0	off
	Source	Output	Start Source	End Source	
Analog Output 1	ΡΣ	4 20 mA	0 W	2000 W	
Analog Output 2	QΣ	4 20 mA	0 VAr	1000 VAr	
Analog Output 3	12	4 20 mA	0 A	5 A	
Analog Output 4	U2	4 20 mA	0 V	250 V	
	Source	Energy Type	Energy Direction	Pulse Rate	Tariff
S01	ΕΡΣ	Active Energy	Import	10 pulses/kWh	High tariff
S02	ΕΡΣ	Active Energy	Export	10 pulses/kWh	High tariff
Display	Brightness 5	Filter 0			
RS-232, RS-485	Baud Rate 9600	Address 250	Parity Even	Protocol E244	
Energy Meter	Mode LTHT				
Reactive Power	per DIN				

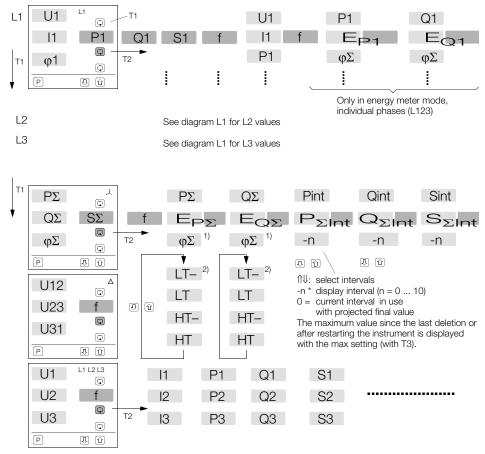

Factory Default Data Logger Parameters

Trigger: off	Pretrigger: 50%	disable Trigger: off
Sampling time: 0.3 s	Storetime: 1 min	Storemode: once
Trace 1 12: all off		

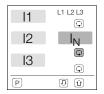

This table applies to the setting: "Set - set default".

3 Operating the A2000

3.1 Control Panel



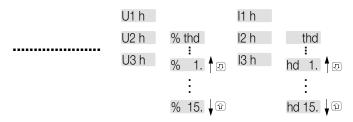
3.2 Response After Auxiliary Power is Switched On



The operating mode displayed prior to shutdown is displayed when the instrument is switched on again.

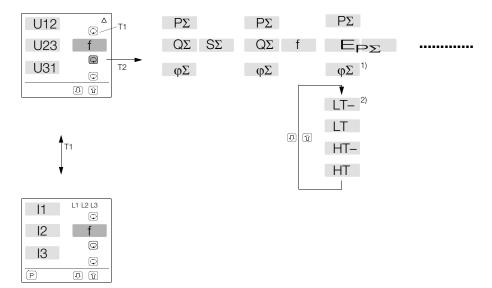
3.3 Menu Display for Measurements in 4-Wire Systems

If a rotating field is established at the U or I inputs of the A2000, the neutral conductor current is displayed instead of the frequency.

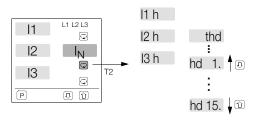


L1, L2, L3, \land , \land and L123 comprise 6 display groups. If a given group is exited, the current display mode is stored to memory and is re-initialized when the group is queried again.

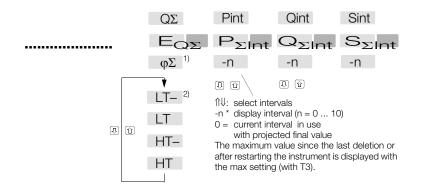
1) in energy meter mode L123 2) in energy meter mode LTHT



HT High Tariff Import



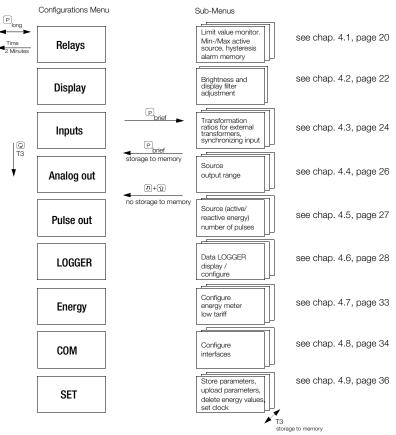
When displaying the maximum values of the harmonic, press key P to indicate the time and date when the respective maximum value occurred. (Function only available for version with data logger)


3.4 Menu Display for Measurements in 3-Wire Systems

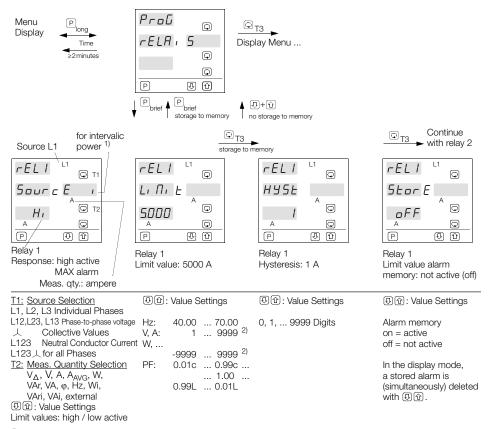
If a rotating field is established at the U or I inputs of the A2000, the neutral conductor current is displayed instead of the frequency.

When displaying the maximum values of the harmonic, press key P to indicate the time and date when the respective maximum value occurred. (Function only available for version with data logger)

1) in energy meter mode L123 2) in energy meter mode LTHT

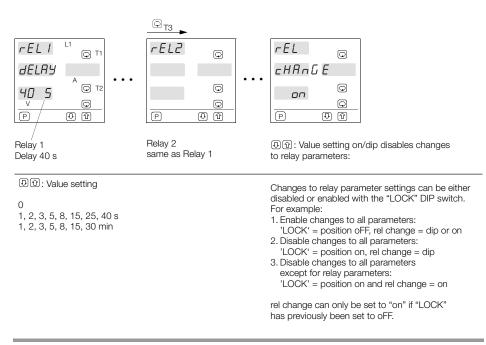

LT-	Low Tariff Export
LT	Low Tariff Import
HT-	High Tariff Export
HT	High Tariff Import

3.5 Error Messages

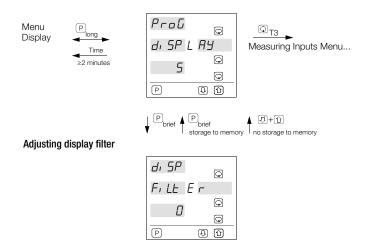

Err PArANELEr Q Q P U D	Err AnALoU Q P U Ú	Err cAL, brAEE 0 0 P U Ú
Parameters Error	Error at Analog Component	Calibration Error
One or more parameters have been irreparably corrupted. Remedy: Enter P _{long} configurations menu. SET USER restores the user parameter set which has been stored	Check the measuring voltages with a multime- ter in the direct current measuring range to see whether or not they demonstrate a direct current component of greater than 6 V.	The calibration values in the EEPROM have been corrupted. Send the instrument to our service department.
which has been stored to memory. SET DEFAULT restores all factory default parameters.	If this is not the case, the analog component is defective. Send the instrument to our service department.	

4 Configuring the A2000

Configuration changes are only possible if the 'LOCK' DIP switch is in the 'off' position.


4.1 Configuring the Limit Value Relays

¹⁾ The source is relative to the current (–0) interval value ($P_{\Sigma int}, Q_{\Sigma int}, S_{\Sigma int}$) for intervalic power


²⁾ Decimal point depending upon settings of the transformation ratio

Example: Limit value relay 2, but with other quantities and values.

4.2 Adjustment of Display Brightness and Filter

Adjusting display brightness

Parameters for display brightness

. Adjustment of values

0...7

0

The values are adopted immediately upon entry. For permanent setting, however, storage to memory is recommended.

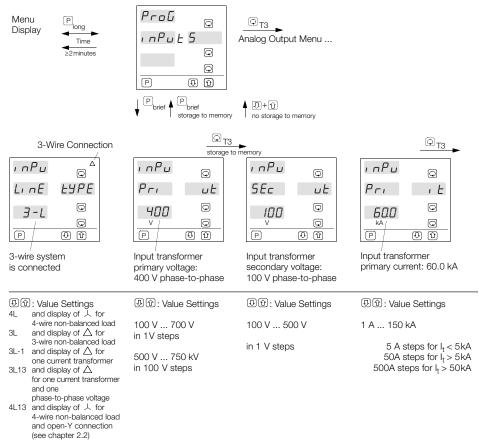
7 maximum brightness

minimum brightness

Parameters for display filter

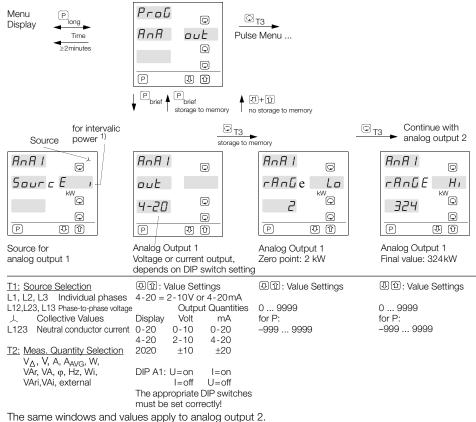
D1: Adjustment of values

Time constant τ in s 0 ... 30


0 no filter effect

30 maximum filter effect

The display filter is a software filter which acts as a lowpass function with the time constant τ . A time constant between 0 and 30 s can be set to stabilize the display in the event of fluctuating input signals or interfering signals. If an input signal soars abruptly, the displayed value adjusts only gradually to the actual value, in line with the selected time constant. After 5 τ almost 100% of the input signal are displayed.


Set the time constant to 0, if the changes are to be displayed immediately and in an unfiltered manner.

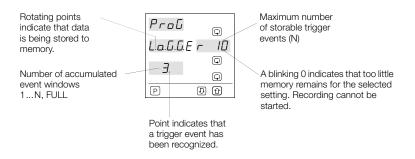
4.3 Measurement Inputs, Configuring the Synchronizing Input

© _{T3}			
infu Q	unPu o	ınPu 👳	ınPu 🔉
SEc , E	Adj , E	FrE9 UEncy	SyncHron
A Q P 0 0	I.000 P A C P Y	Ruto O P U Ú	<u>I5 Л</u> © Р Ф Ф
Input transformer secondary current: 1.00 A	Input transformer adjustment current transformer	Line frequency synchronization	Synchronizing pulse every 15 minutes
01: Value Settings	①①: Value Settings	D1: Value Settings	DD: Value Settings
1 or 5 A	0.900 1.100	All phases, voltage and current are scanned.	external, 1 60 minutes <u>EEE</u> ext. synchroniz- ing pulse to synchronizing input, or internal with
		U I-3 Only voltages are used.	selection of interval from 1 to 60 min.


4.4 Configuring the Analog Outputs (not with Profibus-DP)

Analog outputs 3 and 4 may also be optionally included.

¹⁾ The source is relative to the latest completed interval value ($P_{\Sigma int}$, $Q_{\Sigma int}$, $S_{\Sigma int}$) for intervalic power


4.5 Configuring the S0 Pulse Outputs

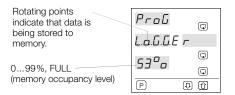
The import and export settings are without significance for reactive energy, which is always indicated with a positive value.

4.6 Data Logger Display and Configuration

Display for Trigger Source Setting rel 1, rel 2, both

If the data logger is not recording, the display blinks alternately: Logger/stop

Attention:

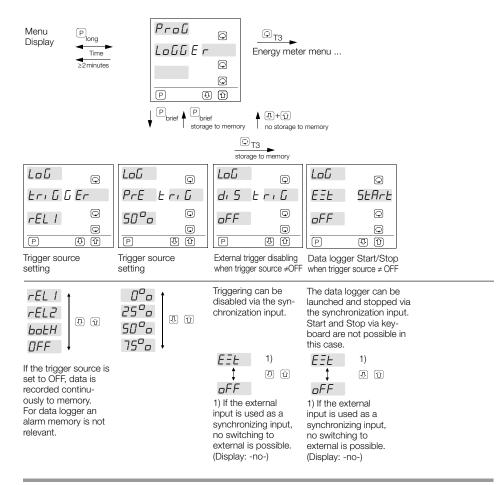

If the real-time clock has stopped, the display blinks alternately: Logger/time date

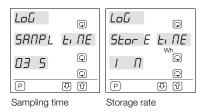
Operation of the data logger is interrupted if:

- Memory is full and the memory mode is set to "once"
- If a data logger parameter is changed (display: Logger/stop)
- The data logger is stopped with 🗓 long

Attention: Memory is cleared when the data logger is started!

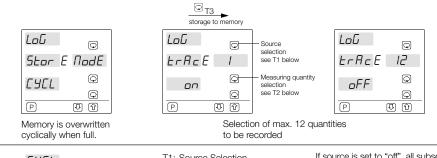
Display for parameter setting Trigger Source OFF




If the power supply is interrupted during a recording session, the A2000 supplements the outstanding samples after restarting the instrument:

- A value of "0" is entered for all measured quantities, except for energies (last meter reading)
- If a trigger source has been selected, the beginning of power supply interruption is always considered to be a trigger.
- If the trigger source has been set to "OFF", the beginning of power supply interruption is recorded in the time stamp of the last trigger. (Time stamp of the first trigger = start of recording)
- If power supply interruption takes longer than the remaining storage rate, the current window is completed and a new untriggered window is produced if a trigger source has been selected.

In the case of trigger source "OFF", cyclical memory mode and a power supply interruption \bigtriangleup which takes longer than the storage rate, the complete memory will be overwritten.



0.3 5	ІП
1 🗘 🗘	1 🖸 🛈
<u>л ое</u>	Ч Ы
5ec: 0.3, 0.6, 1, 2,	∏in: 1, 2, 5,10, 15, 30
5,10, 15, 30	Hour:1, 2, 4, 8, 12
∏in: 1, 2, 5, 10, 15, 30	day: 1, 2, 4

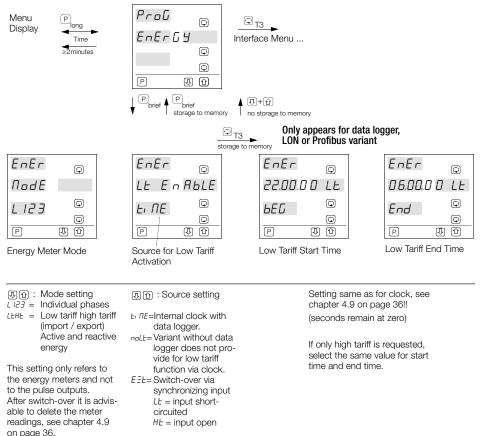
Sampling time T_{sa} , storage time T_{st} and number of traces ΣTr result in a maximum number of storable trigger events N with a memory capacity of 512 kByte

 $N = (250\,000 \text{ x T}_{sa}) / (T_{st} \text{ x } \Sigma \text{Tr})$

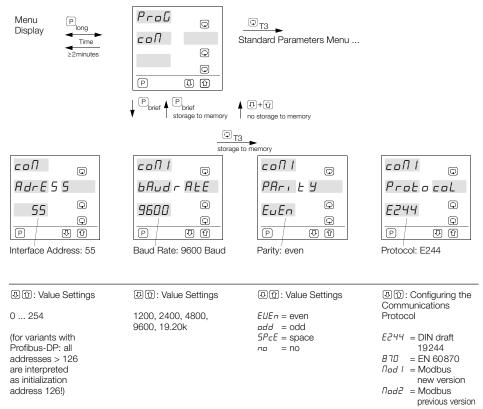
(Round N up to whole number: Nmin = 1, Nmax = 99) If the display blinks when the value is selected, the memory is too small for the selected setting.

The data logger is stopped when memory is full.

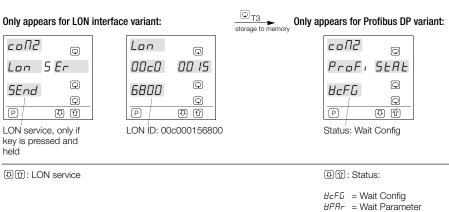
T1: Source Selection


L1, L2, L3 Individual phases L12,L23, L13 Phase-to phase voltage **Collective Values** 人 L123 Neutral conductor current

T2: Meas. Quantity Selection VA, V, A, AAVG, W, VAr, VA, φ, Hz, Wi, VAri.VAi. Wh. VArh, Ahd, Vhd, OFF

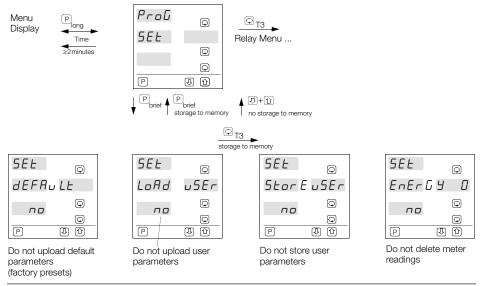

The source is relative to the latest completed interval value for intervalic power ($P_{\Sigma int}, Q_{\Sigma int}$ $S_{\Sigma int}$)

If source is set to "off", all subsequent traces are of no significance (menu jumps to start trigger).


4.7 Configuring the Energy Meter Mode/Low Tariff

4.8 Interface Configuration

These values apply to both the RS485 and the RS232. However, both interfaces cannot be operated simultaneously.

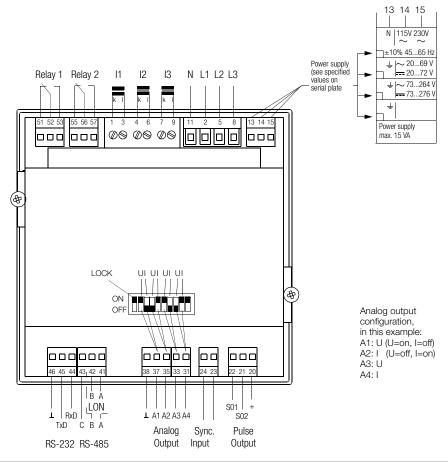


dRL. = Data Exchange

Err = Error

Only one of these two variant options can be installed. The RS-485 interface is omitted for the LON interface variant, and the RS-485 interface with analog outputs is omitted for the Profibus DP variant.

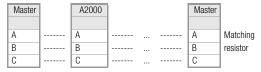
4.9 Uploading and Deleting Parameters, Setting the Clock

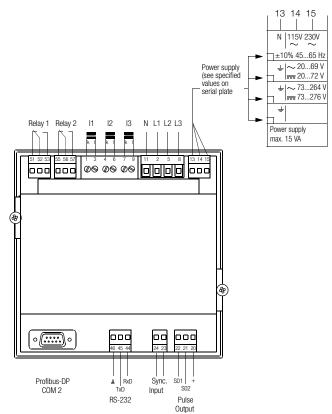

现问: settings no/yes. For reasons of safety, the ① or ④ key must be pressed and held for more than 2 sec.

yes loads/stores the corresponding parameters -

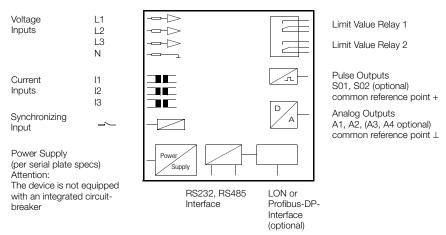
- yes deletes all meter readings

T3 storage to memory	Only appears for data logger, LON or Profibus variant	
SEL Q	SEL Q	SEL 😡
rEAL P	1428 0 8	14.10 1998
Image: Constraint of the second se	レバビ (D) レバン (D) レノー (2) (予) Selection and storage of hours and minutes (corre- sponding display blinks)	Image: display state Image: display state Image: display state Ima
④①: Status:	문요: Selection:	思①: Selection:
di n = Reactive power per DIN 40110 without + or - sign 5. Lin = Reactive power with + or - sign LoNP = Compensating reactive power FErr = Ferraris meters	Adjust hours and minutes (seconds are set to zero when time is saved to memory)	Adjust day, month and year


GMC-I Gossen-Metrawatt GmbH



RS-232 Pin Assignments


Sub-D plug	at PC		A2000
No. of pins	25	9	RS-232
DCD	8	1	
RxD	3	2	 TxD
TxD	2	3	 RxD
DTR	20	4	
Gnd	7	5	 \perp
DSR	6	6	
RTS	4	7	
CTS	5	8	

RS-485 Pin Assignments (not included with LON variant)

Electrically Isolated Circuits

6 Interface Description

The following sub-chapters include a brief description of the interfaces. Please refer to the following manuals if you require a detailed description of the interface protocols:

Communications Protocol per DIN draft 19244	Ref
Communications Protocol per EN 60870	Ref
Communications Protocol per Modbus – Nad I –	Ref
Communications Protocol per Modbus – Nad 2 –	Ref
LON Interface	Ref
Profibus Interface	Ref

Reference No. 3-349-125-03
Reference No. 3-349-128-03
Reference No. 3-349-225-03
Reference No. 3-349-129-03
Reference No. 3-349-091-03
Reference No. 3-349-092-03

6.1 General

The instrument is equipped with an RS232, as well as an RS485 interface as standard equipment. However, only one interface may be operated at any given time. If a LON interface has been installed (optional), the RS485 interface is not included. See chapter 5 on page 38 for electrical connections. If the optional Profibus DP interface has been installed instead of the LON interface, the RS-485 and the analog outputs are omitted. See the Profibus DP interface description for electrical connections.

- Char. format: 8 data bits, 1 parity bit, 1 stop bit
- Parity: even, odd, space, no

The following settings are required in order to fulfill the requirements set forth in the respective standards:

- DIN draft 19244: even, if operated at a modem: no
- EN 60870: even
- Modbus: even, odd, no

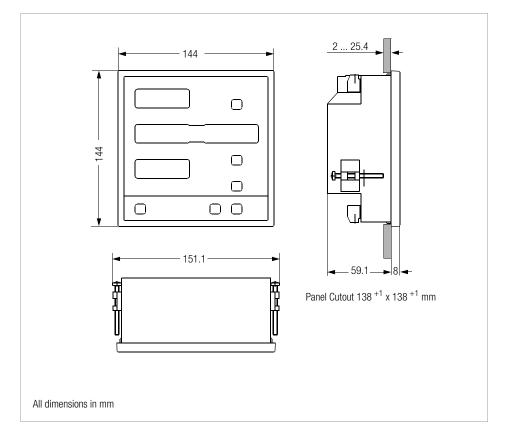
RS-232

Depending upon the driver software, it may be necessary to install jumpers at the master, e.g. DCD+DTR+DSR and RTS+CTS.

RS-485

If the RS485 interface is used, up to 32 instruments can be interconnected via the bus. In this case, all ABC terminals are connected to one another in parallel. Wiring must be carried out from one instrument to the next; star networks may not be implemented. For bus cables of greater than 5 meters in length, the bus should be terminated at both ends with a surge impedance (e.g. 200Ω between A and B).

6.2 Communications Protocol


The communications protocol in accordance with DIN draft 19244, EN 60870 or the Modbus protocol is used for communications between the field control and device levels. The A2000 utilizes only a subset of the functions defined in the protocol. Separate descriptions are available for each of the individual communications protocols.

The following functions are not used: query acknowledgement for individual characters and transmission control by means of record sequence bit.

Time Response Characteristics

Ready to transmit/receive after start-up Character delay time (A2000 transmitter) Character delay time (Master) Response delay time (A2000 transmitter) Query waiting time after response from A2000 (master)
$$\begin{split} t_{ber} &> 5 \ s \\ t_{zvs} &< 3 \ ms \\ t_{zvm} &< 100 \ ms \\ 10 \ ms &< t_{av} &< 100 \ ms \\ t_{aw} &> 10 \ ms \end{split}$$

7 Dimensional Drawing

8 Technical Data

Measurement Inputs

0 ... 500 ... 550 V.

0 ... 290 ... 320 V,

40 ... 70 Hz

40 ... 70 Hz

0 ... 1 ... 1.2 A

0...5...6A

< 150 mW

+0.02 Hz

Measurement:

import and export,

1.4-fold cont. 30 A / 10 s, 100 A / 3 s

32 samples per period

per measurement value

± (0.25 % of NV + 1 digit)

+ 0.02 for U. I > 10 % of NV

± (0.5 % of NV + 1 digit)

inductive and capacitive

NV = nominal value, MV = measurement value $\pm (0.25 \% \text{ of } NV + 1 \text{ digit})$

for MV > 2 % of NV

1.2-fold

< 1.1 W

 $> 290 \text{ k}\Omega$

Voltage Inputs

Phase – Phase Phase – N (ground) Overload Intrinsic Impedance Power Consumption **Current Inputs**

Overload

Power Consumption Sampling Rate

Measuring Error

Current

Voltage Power, Energy Power Factor Frequency 4-Quadrant Operation

Interfaces

RS-232 and RS-485
alternatively:
RS-232 and LON or
RS-232 and Profibus-DP
1200, 2400, 4800, 9600,
19200 baud
even, odd, space, no

Protocol for RS-232 and RS-485

5 selectable: GMC device bus (DIN draft 19244), EN 60870 or Modbus (RTU)

Svnchronizing input

On	short-circuited with
Off	$R < 10 \Omega$ open with $R > 10 M\Omega$

Pulse Outputs

Contact Current External Voltage Pulse Duration Interpulse Period

open collector ON 10 mA ... 27 mA OFF < 2 mA 8 ... 30 V selectable 100 ... 800 ms ≥ 10 ms

Analog Outputs

Output Quantity Current Ranges Load Load Effect Resolution Error Limit Voltage Ranges Load Load Effect Resolution Error Limit configurable

 $\begin{array}{l} 0-20 \text{ mA}, \ 4-20 \text{ mA}, \\ \pm 20 \text{ mA} \\ \text{max}, \ 500 \ \Omega \\ < 0.8 \ \mu\text{A} \ / \ \Omega \\ (0 \ \dots \ 250 \ \dots \ 500 \ \Omega) \\ 0.1 \ \% \ of \ control \ range \\ \pm 0.5 \ \% \ of \ final \ value \end{array}$

 $0 - 10 V, 2 - 10 V, \pm 10 V$ < 20 mA no effect to > 10 K Ω 0.1% of control range + 1.0% of final value

where control range = upper range limit – lower range limit, e.g. 1200 W = 1500 W – 300 W (freely selectable values)

Relay Outputs

Switching Capacity	\sim / 250 V, 2 A
	500 VA / 50 W (nomir

Service Life

~ / --- 250 V, 2 A 500 VA / 50 W (nominal load) > 500000 switching cycles

Display

Type 7-Segment LED **Display Color** red 13.2 mm Character Height **Display Range** Energy 9999999999 Power Factor 1.00 Other Quantities 9999 Internal Clock (only in version with datalogger, LON or Profibus) Accuracy

Accuracy < 2.5 s/day Power Supply lithium cell, life cycle appr. 8 years

Power Supply

 Supply Voltage

 Feature H0
 230 V / 115 V ~ ± 10%

 45 ... 65 Hz

 Feature H1
 20 ... 69 V ~ 45...450 Hz

 20 ... 72 V ==

 Feature H2
 73 ... 264 V ~ 45...450 Hz

 73 ... 276 V ==

 Feature H3
 20 ... 27 V ~ 45...450 Hz

 20 ... 36 V ==

 Power Consumption
 max. 15 VA

The instrument is not equipped with an integrated circuit breaker. Therefore, during installation, care should be taken to ensure that

- the building where the instrument is installed includes a circuit breaker,
- the circuit breaker is positioned in close proximity to the instrument and is easily accessible to the operator,
- it is clearly marked as a circuit breaking device for the instrument.

GMC-I Gossen-Metrawatt GmbH

Electrical Safety Variants

Protection Class Measuring Category Contamination Level Operating Voltage Test Voltage **Protection** Front Panel Housing Terminals **Fuses** The supply circuit is protected Feature H0

EN 61010-1 II inputs: III, relays: II 2 300 V ~ / --measuring inputs: 3.7 kV IEC 60529 / EN 60529 IP 52 IP 30 IP 20

IEC 61010-1 /

 The supply circuit is protected by an internally soldered fuse.

 Feature H0
 T160mA/250V

 Feature H1
 T1A/250V

 Feature H2
 T250mA/250V

 Feature H3
 T1.25A/250V

EMC

Interference Emission/ Interference Immunity IEC 61326 / EN 61326

Ambient Conditions

Operating Temp.0 ... 50 °CStorage Temp.- 25 ... 70 °CRelative Humidity75% no condensation

Housing

Front Dimensions Panel Cutout Bezel Height Installation Depth Weight Mounting Terminals 144 x 144 mm 138 ⁺¹ x 138 ⁺¹ mm 8 mm 59.1 mm 1 kg (without packaging) DIN screw clamps screw clamp terminal blocks

9 Maintenance – Device Return and Environmentally Sound Disposal

Maintenance

The A2000 does not require maintenance at regular intervals.

Device Return and Environmentally Sound Disposal

The A2000 is a category 9 product (monitoring and control

instrument) in accordance with ElektroG (German electrical and electronic device law). This device is not subject to the RoHS directive.

We identify our electrical and electronic devices (as of August 2005) in accordance with WEEE 2002/ 96/EC and ElektroG with the symbol shown to the right per DIN EN 50419.

These devices may not be disposed of with the trash. Please contact our service department regarding the return of old devices (see chapter 9).

10 Repair and Replacement Parts Service DKD Calibration Lab and Rental Instrument Service

When you need service, please contact:

GMC-I Gossen-Metrawatt GmbH Service-Center Thomas-Mann-Strasse 20 90471 Nürnberg, Germany Phone +49 911 86 02 - 0 Fax +49 911 86 02 - 2 53 E-mail service@gossenmetrawatt.com

This address is only valid in Germany.

Please contact our representatives or subsidiaries for service in other countries.

11 Product Support

When you need support, please contact:

GMC-I Gossen-Metrawatt GmbH Product Support Hotline Phone +49 911 86 02 - 500 Fax +49 911 86 02 - 340 E-mail support@gossenmetrawatt.com

Edited in Germany • Subject to change without notice • A pdf version is available on the internet

GMC-I Gossen-Metrawatt GmbH Thomas-Mann-Str. 16-20 90471 Nürnberg • Germany Phone +49 911 8602-111 Fax +49 911 8602-777 E-Mail info@gossenmetrawatt.com www.gossenmetrawatt.com